Define the terms 'bit', 'nibble', 'megabyte', 'gigabyte', 'terabyte', and 'petabyte'

Compare 'kibibyte', 'mebibyte', 'gibibyte', and 'tebibyte' to 'megabyte', 'gigabyte', 'terabyte', and 'petabyte'

Explain what data compression is

Explain why data may be compressed, and that there are different ways to compress data

Define lossless and lossy compression

Explain how data can be compressed using run length encoding (RLE)

Represent data in RLE frequency/data pairs

Calculate compression ratios

Explain how data can be compressed using Huffman coding

Interpret a Huffman tree

Calculate the number of bits required to store a piece of data compressed using Huffman coding

Convert between units of measurement

Represent data in RLE frequency/data pairs

Calculate the number of bits required to store a piece of data compressed using Huffman coding

Summative assessment